Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Mol Genet Metab ; 138(4): 107559, 2023 04.
Artigo em Inglês | MEDLINE | ID: covidwho-20243551

RESUMO

Phosphomannomutase-2-congenital disorder of glycosylation (PMM2-CDG) is the most common CDG and presents with highly variable features ranging from isolated neurologic involvement to severe multi-organ dysfunction. Liver abnormalities occur in in almost all patients and frequently include hepatomegaly and elevated aminotransferases, although only a minority of patients develop progressive hepatic fibrosis and liver failure. No curative therapies are currently available for PMM2-CDG, although investigation into several novel therapies is ongoing. We report the first successful liver transplantation in a 4-year-old patient with PMM2-CDG. Over a 3-year follow-up period, she demonstrated improved growth and neurocognitive development and complete normalization of liver enzymes, coagulation parameters, and carbohydrate-deficient transferrin profile, but persistently abnormal IgG glycosylation and recurrent upper airway infections that did not require hospitalization. Liver transplant should be considered as a treatment option for PMM2-CDG patients with end-stage liver disease, however these patients may be at increased risk for recurrent bacterial infections post-transplant.


Assuntos
Defeitos Congênitos da Glicosilação , Transplante de Fígado , Fosfotransferases (Fosfomutases) , Feminino , Humanos , Pré-Escolar , Glicosilação , Seguimentos , Fosfotransferases (Fosfomutases)/genética , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/genética , Fígado/metabolismo , Imunoglobulina G
2.
Bioinformatics ; 38(Supplement_2): ii162-ii167, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: covidwho-20236649

RESUMO

MOTIVATION: We have previously designed and implemented a tree-based ontology to represent glycan structures with the aim of searching these structures with a glyco-driven syntax. This resulted in creating the GlySTreeM knowledge-base as a linchpin of the structural matching procedure and we now introduce a query language, called GlycoQL, for the actual implementation of a glycan structure search. RESULTS: The methodology is described and illustrated with a use-case focused on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike protein glycosylation. We show how to enhance site annotation with federated queries involving UniProt and GlyConnect, our glycoprotein database. AVAILABILITY AND IMPLEMENTATION: https://glyconnect.expasy.org/glycoql/.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteínas , Glicosilação , Humanos , Polissacarídeos/química
4.
J Am Soc Mass Spectrom ; 34(6): 1086-1095, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: covidwho-2313383

RESUMO

Glycosylation is an important protein post-translational modification that plays a pivotal role in the bioactivity of therapeutic proteins and in the infectivity of viral proteins. Liquid chromatography with tandem mass spectrometry readily identifies protein glycans with site specificity. However, the overnight incubation used in conventional in-solution proteolysis leads to high turnaround times for glycosylation analysis, particularly when sequential in-solution digestions are needed for site-specific glycan identification. Using bovine fetuin as a model glycoprotein, this work first shows that in-membrane digestion in ∼3 min yields similar glycan identification and quantitation when compared to overnight in-solution digestion. Protease-containing membranes in a spin column enable digestion of therapeutic proteins (trastuzumab and erythropoietin) and a viral protein (SARS-CoV-2 receptor binding domain) in ∼30 s. Glycan identification is similar after in-solution and in-membrane digestion, and limited in-membrane digestion enhances the identification of high-mannose glycans in trastuzumab. Finally, stacked membranes containing trypsin and chymotrypsin allow fast sequential proteolytic digestion to site-specifically identify the glycans of SARS-CoV-2 receptor binding domain. One can easily assemble the protease-containing membranes in commercial spin columns, and spinning multiple columns simultaneously will facilitate parallel analyses.


Assuntos
COVID-19 , Peptídeo Hidrolases , Animais , Bovinos , Glicosilação , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , Polissacarídeos/metabolismo , Trastuzumab/metabolismo , Digestão
5.
Glycobiology ; 33(6): 476-489, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2304778

RESUMO

The COVID-19 global pandemic has underscored the need to understand how viruses and other pathogens are able to infect and replicate within the respiratory system. Recent studies have highlighted the role of highly O-glycosylated mucins in the protection of the respiratory system as well as how mucin-type O-glycosylation may be able to modify viral infectivity. Therefore, we set out to identify the specific genes controlling mucin-type O-glycosylation throughout the mouse respiratory system as well as determine how their expression and the expression of respiratory mucins is influenced by infection or injury. Here, we show that certain mucins and members of the Galnt family are abundantly expressed in specific respiratory tissues/cells and demonstrate unique patterns of O-glycosylation across diverse respiratory tissues. Moreover, we find that the expression of certain Galnts and mucins is altered during lung infection and injury in experimental mice challenged with infectious agents, toxins, and allergens. Finally, we examine gene expression changes of Galnts and mucins in a mouse model of SARS-CoV-2 infection. Our work provides foundational knowledge regarding the specific expression of Galnt enzyme family members and mucins throughout the respiratory system, and how their expression is altered upon lung infection and injury.


Assuntos
COVID-19 , Mucinas , Animais , Camundongos , Mucinas/genética , Mucinas/metabolismo , Glicosilação , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sistema Respiratório/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(18): e2213332120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2304032

RESUMO

Among the current five Variants of Concern, infections caused by SARS-CoV-2 B.1.617.2 (Delta) variant are often associated with the greatest severity. Despite recent advances on the molecular basis of elevated pathogenicity using recombinant proteins, the architecture of intact Delta virions remains veiled. Moreover, pieces of molecular evidence for the detailed mechanism of S-mediated membrane fusion are missing. Here, we showed the pleomorphic nature of Delta virions from electron beam inactivated samples and reported the in situ structure and distribution of S on the authentic Delta variant. We also captured the virus-virus fusion events, which provided pieces of structural evidence for Delta's attenuated dependency on cellular factors for fusion activation, and proposed a model of S-mediated membrane fusion. Besides, site-specific glycan analysis revealed increased oligomannose-type glycosylation of native Delta S than that of the WT S. Together, these results disclose distinctive factors of Delta being the most virulent SARS-CoV-2 variant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Fusão de Membrana , Glicosilação , Glicoproteína da Espícula de Coronavírus
7.
Metallomics ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: covidwho-2276629

RESUMO

Iron is an essential element required by cells and has been described as a key player in ferroptosis. Ferritin operates as a fundamental iron storage protein in cells forming multimeric assemblies with crystalline iron cores. We discuss the latest findings on ferritin structure and activity and its link to cell metabolism and ferroptosis. The chemistry of iron, including its oxidation states, is important for its biological functions, its reactivity, and the biology of ferritin. Ferritin can be localized in different cellular compartments and secreted by cells with a variety of functions depending on its spatial context. Here, we discuss how cellular ferritin localization is tightly linked to its function in a tissue-specific manner, and how impairment of iron homeostasis is implicated in diseases, including cancer and coronavirus disease 2019. Ferritin is a potential biomarker and we discuss latest research where it has been employed for imaging purposes and drug delivery.


Assuntos
COVID-19/metabolismo , Ferritinas/química , Ferritinas/metabolismo , SARS-CoV-2 , Biomarcadores/química , Biomarcadores/metabolismo , Biotecnologia , Ceruloplasmina/metabolismo , Sistemas de Liberação de Medicamentos , Ferritinas/genética , Ferroptose/fisiologia , Glicosilação , Homeostase , Humanos , Inflamação/metabolismo , Ferro/metabolismo , Nanotecnologia , Neoplasias/diagnóstico , Neoplasias/metabolismo , Prognóstico , Distribuição Tecidual
8.
ACS Appl Mater Interfaces ; 15(14): 17592-17600, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: covidwho-2269302

RESUMO

H-bond networks at heterogeneous interfaces play crucial roles in bioseparation, biocatalysis, biochip array profiling, and functional nanosystem self-assembly, but their precise modulation and enhancement remain challenging. In this study, we have discovered that interfacial hydrophobic hydration significantly enhances H-bond networks at the interface between a glycan-modified adsorbent and a methanol-water-acetonitrile ternary solution. The enhanced H-bond networks greatly promote the adsorbent-solution heterogeneous glycan-glycan recognition and interaction. This novel hydrophobic hydration-enhanced hydrophilic interaction (HEHI) strategy improves the affinity and efficiency of intact glycopeptide enrichment. Compared with the commonly used hydrophilic-interaction enrichment strategy, 23.5 and 48.5% more intact N- and O-glycopeptides are identified, and the enrichment recoveries of half of the glycopeptides are increased >100%. Further, in-depth profiling of both N- and O-glycosylation occurring on SARS-CoV-2 S1 and hACE2 proteins has been achieved with more glycan types and novel O-glycosylation information involved. Interfacial hydrophobic hydration provides a powerful tool for the modulation of hydrophilic interactions in biological systems.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Glicosilação , Glicopeptídeos/química , Polissacarídeos/química , Interações Hidrofóbicas e Hidrofílicas
9.
Anal Chim Acta ; 1252: 341029, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: covidwho-2277233

RESUMO

N-linked glycosylation (N-glycosylation) is a common protein post-translational modification, occurring on more than half of mammalian proteins; in striking contract with small molecule modifications (such as methylation, phosphorylation) with only single structures, N-glycosylation has multiple dimensional structural features (monosaccharide composition, sequence, linkage, anomer), which generates enormous N-glycan structures; and these structures widely regulate protein structure and functions. For the modification site, N-glycosylation occurs on the Asn residue among the consensus N-X-S/T/C (X≠P) motif; mutation-originated amino acid change may lead to loss of such an original motif and thus loss-of-glycosylation (LoG) or gain of such a new motif and thus gain-of-glycosylation (GoG). Both LoG and GoG generates new structures and functions of glycoproteins, which has been observed in the S protein of SARS-Cov-2 as well as malignant diseases. Here we report our glycoproteome-wide qualitative N-glycoproteomics characterization of GoGs in breast cancer Adriamycin drug resistance (ADR) cells (MCF-7/ADR) and cancer stem cells (MCF-7/ADR CSCs); comprehensive N-glycosite and N-glycan structure information at the intact N-glycopeptide level were reported.


Assuntos
Adenocarcinoma , COVID-19 , Animais , Humanos , Glicosilação , Células MCF-7 , Glicopeptídeos/química , SARS-CoV-2 , Glicoproteínas/química , Polissacarídeos , Doxorrubicina , Células-Tronco Neoplásicas/metabolismo , Mamíferos/metabolismo
10.
Nat Commun ; 14(1): 948, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2282182

RESUMO

Small molecule inhibitors of glycosylation enzymes are valuable tools for dissecting glycan functions and potential drug candidates. Screening for inhibitors of glycosyltransferases are mainly performed by in vitro enzyme assays with difficulties moving candidates to cells and animals. Here, we circumvent this by employing a cell-based screening assay using glycoengineered cells expressing tailored reporter glycoproteins. We focused on GalNAc-type O-glycosylation and selected the GalNAc-T11 isoenzyme that selectively glycosylates endocytic low-density lipoprotein receptor (LDLR)-related proteins as targets. Our screen of a limited small molecule compound library did not identify selective inhibitors of GalNAc-T11, however, we identify two compounds that broadly inhibited Golgi-localized glycosylation processes. These compounds mediate the reversible fragmentation of the Golgi system without affecting secretion. We demonstrate how these inhibitors can be used to manipulate glycosylation in cells to induce expression of truncated O-glycans and augment binding of cancer-specific Tn-glycoprotein antibodies and to inhibit expression of heparan sulfate and binding and infection of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Glicosilação , SARS-CoV-2/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo
11.
Methods Enzymol ; 682: 137-185, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2250770

RESUMO

Traditional mass spectrometry-based glycoproteomic approaches have been widely used for site-specific N-glycoform analysis, but a large amount of starting material is needed to obtain sampling that is representative of the vast diversity of N-glycans on glycoproteins. These methods also often include a complicated workflow and very challenging data analysis. These limitations have prevented glycoproteomics from being adapted to high-throughput platforms, and the sensitivity of the analysis is currently inadequate for elucidating N-glycan heterogeneity in clinical samples. Heavily glycosylated spike proteins of enveloped viruses, recombinantly expressed as potential vaccines, are prime targets for glycoproteomic analysis. Since the immunogenicity of spike proteins may be impacted by their glycosylation patterns, site-specific analysis of N-glycoforms provides critical information for vaccine design. Using recombinantly expressed soluble HIV Env trimer, we describe DeGlyPHER, a modification of our previously reported sequential deglycosylation strategy to yield a "single-pot" process. DeGlyPHER is an ultrasensitive, simple, rapid, robust, and efficient approach for site-specific analysis of protein N-glycoforms, that we developed for analysis of limited quantities of glycoproteins.


Assuntos
Glicoproteínas , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Polissacarídeos/metabolismo , Espectrometria de Massas
12.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3157-3172, 2022 Sep 25.
Artigo em Chinês | MEDLINE | ID: covidwho-2288066

RESUMO

COVID-19 represents the most serious public health event in the past few decades of the 21st century. The development of vaccines, neutralizing antibodies, and small molecule chemical agents have effectively prevented the rapid spread of COVID-19. However, the continued emergence of SARS-CoV-2 variants have weakened the efficiency of these vaccines and antibodies, which brought new challenges for searching novel anti-SARS-CoV-2 drugs and methods. In the process of SARS-CoV-2 infection, the virus firstly attaches to heparan sulphate on the cell surface of respiratory tract, then specifically binds to hACE2. The S protein of SARS-CoV-2 is a highly glycosylated protein, and glycosylation is also important for the binding of hACE2 to S protein. Furthermore, the S protein is recognized by a series of lectin receptors in host cells. These finding implies that glycosylation plays important roles in the invasion and infection of SARS-CoV-2. Based on the glycosylation pattern and glycan recognition mechanisms of SARS-CoV-2, it is possible to develop glycan inhibitors against COVID-19. Recent studies have shown that sulfated polysaccharides originated from marine sources, heparin and some other glycans display anti-SARS-CoV-2 activity. This review summarized the function of glycosylation of SARS-CoV-2, discoveries of glycan inhibitors and the underpinning molecular mechanisms, which will provide guidelines to develop glycan-based new drugs against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Glicosilação , Heparina , Heparitina Sulfato , Humanos , Polissacarídeos/química , Receptores Mitogênicos/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
Biochem Pharmacol ; 206: 115335, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-2249225

RESUMO

Glycan is an essential molecule that controls and drives life in a precise direction. The paucity of research in glycobiology may impede the significance of its role in the pandemic guidelines. The SARS-CoV-2 spike protein is heavily glycosylated, with 22 putative N-glycosylation sites and 17 potential O-glycosylation sites discovered thus far. It is the anchor point to the host cell ACE2 receptor, TMPRSS2, and many other host proteins that can be recognized by their immune system; hence, glycosylation is considered the primary target of vaccine development. Therefore, it is essential to know how this surface glycan plays a role in viral entry, infection, transmission, antigen, antibody responses, and disease progression. Although the vaccines are developed and applied against COVID-19, the proficiency of the immunizations is not accomplished with the current mutant variations. The role of glycosylation in SARS-CoV-2 and its receptor ACE2 with respect to other putative cell glycan receptors and the significance of glycan in host cell immunity in COVID-19 are discussed in this paper. Hence, the molecular signature of the glycan in the coronavirus infection can be incorporated into the mainstream therapeutic process.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Glicosilação , Polissacarídeos/metabolismo
14.
PLoS One ; 18(3): e0281642, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2285870

RESUMO

At the outset of an emergent viral respiratory pandemic, sequence data is among the first molecular information available. As viral attachment machinery is a key target for therapeutic and prophylactic interventions, rapid identification of viral "spike" proteins from sequence can significantly accelerate the development of medical countermeasures. For six families of respiratory viruses, covering the vast majority of airborne and droplet-transmitted diseases, host cell entry is mediated by the binding of viral surface glycoproteins that interact with a host cell receptor. In this report it is shown that sequence data for an unknown virus belonging to one of the six families above provides sufficient information to identify the protein(s) responsible for viral attachment. Random forest models that take as input a set of respiratory viral sequences can classify the protein as "spike" vs. non-spike based on predicted secondary structure elements alone (with 97.3% correctly classified) or in combination with N-glycosylation related features (with 97.0% correctly classified). Models were validated through 10-fold cross-validation, bootstrapping on a class-balanced set, and an out-of-sample extra-familial validation set. Surprisingly, we showed that secondary structural elements and N-glycosylation features were sufficient for model generation. The ability to rapidly identify viral attachment machinery directly from sequence data holds the potential to accelerate the design of medical countermeasures for future pandemics. Furthermore, this approach may be extendable for the identification of other potential viral targets and for viral sequence annotation in general in the future.


Assuntos
Contramedidas Médicas , Vírus , Ligação Viral , Aprendizado de Máquina , Glicosilação
15.
Plant Biotechnol J ; 21(6): 1176-1190, 2023 06.
Artigo em Inglês | MEDLINE | ID: covidwho-2244047

RESUMO

The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking ß-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with "humanized" N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of ß-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.


Assuntos
COVID-19 , Vírus da Hepatite B , Humanos , Animais , Camundongos , Vírus da Hepatite B/genética , Glicosilação , Tabaco/genética , Sistemas CRISPR-Cas/genética , COVID-19/genética , SARS-CoV-2 , Vacinas contra Hepatite B/genética , Anticorpos Neutralizantes , Antígenos de Superfície da Hepatite B/genética
17.
Glycobiology ; 33(3): 188-202, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2222637

RESUMO

With the global spread of the corona virus disease-2019 pandemic, new spike variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continuously emerge due to increased possibility of virus adaptive amino acid mutations. However, the N-glycosylation profiles of different spike variants are yet to be explored extensively, although the spike protein is heavily glycosylated and surface glycans are well-established to play key roles in viral infection and immune response. Here, we investigated quantitatively the N-glycosylation profiles of seven major emerging spike variants including Original, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Kappa (B.1.671.1), Delta (B.1.671.2), and Omicron (B.1.1.529). The aim was to understand the changing pattern of N-glycan profiles in SARS-CoV-2 evolution in addition to the widely studied amino acid mutations. Different spike variants exhibit substantial variations in the relative abundance of different glycan peaks and subclasses, although no specific glycan species are exclusively present in or absent from any specific variant. Cluster analysis shows that the N-glycosylation profiles may hold the potential for SARS-CoV-2 spike variants classification. Alpha and Beta variants exhibit the closest similarity to the Original, and the Delta variant displays substantial similarity to Gamma and Kappa variants, while the Omicron variant is significantly different from its counterparts. We demonstrated that there is a quantifiable difference in N-glycosylation profiles among different spike variants. The current study and observations herein provide a valuable framework for quantitative N-glycosylation profiling of new emerging viral variants and give us a more comprehensive picture of COVID-19 evolution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicosilação , SARS-CoV-2/genética , COVID-19/genética , Glicoproteína da Espícula de Coronavírus/genética , Aminoácidos
18.
Chem Commun (Camb) ; 59(13): 1797-1800, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: covidwho-2221890

RESUMO

The spike protein of SARS-CoV-2 has been widely used as an effective vaccine immunogen, although some limitations still remain. Herein, O-GalNAc glycosylated RBD (Tn-RBD) was synthesized as an antigen via in vitro glycosylation reactions. The inhibition ability against hACE2 binding of antibodies induced with Tn-RBD was 30-40% increased compared to that induced with RBD. This result implies that Tn-glycosylation might play important roles in the immunogenicity of the RBD protein, which should be considered in the design of novel vaccines to fight against COVID-19.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2 , Anticorpos Antivirais , Glicosilação
19.
Anal Bioanal Chem ; 415(8): 1455-1464, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-2209312

RESUMO

COVID-19 is caused by SARS-CoV-2 infection and remains one of the biggest pandemics around the world since 2019. Vaccination has proved to be an effective way of preventing SARS-CoV-2 infection and alleviating the hospitalization burden. Among different forms of COVID-19 vaccine design, the spike protein of SARS-CoV-2 virus is widely used as a candidate vaccine antigen. As a surface protein on the virus envelop, the spike was reported to be heavily N-glycosylated and glycosylation had a great impact on its immunogenicity and efficacy. Besides, N-glycosylation might vary greatly on different expression systems and sequence variant designs. Therefore, comprehensive analysis of spike N-glycosylation is of great significance for better vaccine understanding and quality control. In this study, full characterization of N-glycosylation was performed for a Chinese Hamster Ovary (CHO) cell expressed variant-designed spike protein. The spike protein featured the latest six-proline substitution design together with the incorporation of a combination of mutation sites. Trypsin and Glu-C digestion coupled with PNGase F strategies were adopted, and effective LC-MS/MS methods were applied to analyze samples. As a result, a total of 19 N-glycosites were identified in the recombinant pike protein at intact N-glycopeptide level. Quantitative analysis of released glycan by LC-MS/MS was also performed, and 31 high-abundance N-glycans were identified. Sequencing analysis of glycan was further provided to assist glycan structure confirmation. Moreover, all of the analyses were performed on three consecutive manufactured batches and the glycosylation results on both glycosite and glycans showed good batch-to-batch consistency. Thus, the reported analytical strategy and N-glycosylation information may well facilitate studies on SARS-CoV-2 spike protein analysis and quality studies.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , SARS-CoV-2/genética , Glicosilação , COVID-19/prevenção & controle , Glicoproteína da Espícula de Coronavírus/química , Vacinas contra COVID-19 , Cromatografia Líquida , Células CHO , Espectrometria de Massas em Tandem , Cricetulus , Polissacarídeos/química
20.
ACS Infect Dis ; 8(11): 2348-2361, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: covidwho-2185510

RESUMO

Better understanding of the molecular mechanisms underlying COVID-19 severity is desperately needed in current times. Although hyper-inflammation drives severe COVID-19, precise mechanisms triggering this cascade and what role glycosylation might play therein are unknown. Here we report the first high-throughput glycomic analysis of COVID-19 plasma samples and autopsy tissues. We find that α2,6-sialylation is upregulated in the plasma of patients with severe COVID-19 and in autopsied lung tissue. This glycan motif is enriched on members of the complement cascade (e.g., C5, C9), which show higher levels of sialylation in severe COVID-19. In the lung tissue, we observe increased complement deposition, associated with elevated α2,6-sialylation levels, corresponding to elevated markers of poor prognosis (IL-6) and fibrotic response. We also observe upregulation of the α2,6-sialylation enzyme ST6GAL1 in patients who succumbed to COVID-19. Our work identifies a heretofore undescribed relationship between sialylation and complement in severe COVID-19, potentially informing future therapeutic development.


Assuntos
COVID-19 , Humanos , Glicosilação , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA